欢迎来到淘码网(TMA.CN)

PackingSquaresWithSide1N-author

价格: ¥ 9 积分可抵¥ 9

最后更新: 2020-01-03 18:32:36

演示地址:

指导费: 免费

分类
参数1
参数2
参数3
参数4
参数5
参数6
大小
2 MB
发货方式
自动发货
下载方式
远程下载
1
1
1
备注说明

所属分类物理计算
开发工具:Mathematica
文件大小:9KB
下载次数:1
上传日期:2018-09-06 07:40:09
说明:  矩形内排样。A finite volume of potatoes will fit in a finite sack. This seemingly simple statement leads to a family of very difficult questions, sometimes called potato sack problems.Consider squares with sides 1/2, 1/3,1/4, \[Ellipsis], 1/n. What is the smallest rectangle that can contain the squares as n-> \[Infinity]? One bound is \!\( \*UnderoverscriptBox[\(\[Sum]\), \(n = 2\), \(\[Infinity]\)] \*FractionBox[\(1\), SuperscriptBox[\(n\), \(2\)]]\)=\[Pi]^2/6-1, but no one has found a packing for a rectangle of that area. In 1968, Meir and Moser showed that a square of size 5/6*5/6 was enough. The current record is held by Marc Paulhus, who developed the packing algorithm used for
(A finite volume of potatoes will fit in a finite sack. This seemingly simple statement leads to a family of very difficult questions, sometimes called potato sack problems.)

文件列表

0 (0%)

好评

0 (0%)

中评

0 (0%)

差评

  • 会员中心
  • 浏览记录
  • 我的订单
  • 我的收藏
  • 在线客服

    点击这里给我发消息 点击这里给我发消息

    官方微信

    仅处理投诉、举报及平台使用问题;
    商品问题请咨询商家客服!

  • 意见反馈
  • 返回顶部
浏览记录