欢迎来到淘码网(TMA.CN)

KernelBasedObjectTracking

价格: ¥ 9 积分可抵¥ 9

最后更新: 2019-12-23 20:19:59

演示地址:

解答费: 免费

分类
参数1
参数1
参数1
参数1
参数1
参数1
大小
1 MB
发货方式
自动发货
下载方式
远程下载
1
1
1
备注说明

所属分类行业发展研究
开发工具:PDF
文件大小:2402KB
下载次数:47
上传日期:2009-07-17 01:24:46
说明:  A new approach toward target representation and localization, the central component in visual tracking of nonrigid objects, is proposed. The feature histogram-based target representations are regularized by spatial masking with an isotropic kernel. The masking induces spatially-smooth similarity functions suitable for gradient-based optimization, hence, the target localization problem can be formulated using the basin of attraction of the local maxima. We employ a metric derived from the Bhattacharyya coefficient as similarity measure, and use the mean shift procedure to perform the optimization. In the presented tracking examples, the new method successfully coped with camera motion, partial occlusions, clutter, and target scale variations. Integration with motion filters and data association techniques is also discussed. We describe only a few of the potential applications: exploitation of background information, Kalman tracking using motion models, and face tracking.

0 (0%)

好评

0 (0%)

中评

0 (0%)

差评

  • 会员中心
  • 浏览记录
  • 我的订单
  • 我的收藏
  • 在线客服

    点击这里给我发消息 点击这里给我发消息

    官方微信

    仅处理投诉、举报及平台使用问题;
    商品问题请咨询商家客服!

  • 意见反馈
  • 返回顶部
浏览记录